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a b s t r a c t

Common carotid artery intima–media thickness (IMT), which is usually measured upon ultrasound
images, is an important indicator to cardiovascular diseases. This paper proposes a snake model based
segmentation method to automatically detect the boundary of intima–media for IMT measurement. In
the proposed method, two contours are initialized from line segments generated by Hough transform
eywords:
ltrasound imaging

mage segmentation
ntima–media thickness
ough transform

and then evolved simultaneously by dual snake model for boundary detection. Experimental results
show that the proposed method has strong robustness against ultrasound artifacts, gives better results
than traditional snake model and dynamic programming based methods, and achieves similar clinical
parameters to ground truth data.

© 2011 Elsevier Ltd. All rights reserved.

ctive contour model

. Introduction

Previous researches have indicated that common carotid artery
CCA) intima–media thickness (IMT) is associated with cardiovas-
ular diseases [1,2]. As vascular diseases develop, the structure
f intima–media complex (IMC) of vessel wall thickens, which
bstructs the blood flow of artery. The slowed blood flow is prone to
roduce plaques that are unstable and can easily rupture, resulting

n the debris transported by blood flow and forming the obstruc-
ion of other positions of the artery, which leads to cardiovascular
iseases such as stroke and myocardial infarction. Therefore IMT
an serve as an important indicator for such diseases at an early
tage.

In clinical environment IMT is usually measured from ultra-
ound imaging because of its non-invasive nature and continually
mproving quality. Fig. 1 illustrates the structure of IMC in a longi-
udinal ultrasound image, where the top large image is an example

f CCA and the bottom image is the zoomed region of interest (ROI)
ontaining a part of the far wall IMC. It can be observed in the ROI
hat the lumen, intima, media and adventitia display different echo
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patterns from top to bottom. The layers of intima and media are two
parallel bands, whose boundary is defined by the lumen–intima
interface (LII) and media–adventitia interface (MAI).

Traditional measurement of far wall IMT is based on manual
tracing [3]. It suffers from many problems, such as time consuming,
demanding experienced experts, different results from different
experts or the same expert at different times [4]. The personal expe-
rience and subjective judgment from manual tracing could bring a
large intra- and inter-observer variability. Computer assisted mea-
surement of IMT has the potential to overcome these problems.
The key in this approach is automatic segmentation of IMC in
ultrasound carotid artery images, which has also been reported in
numerous literatures [4–11].

1.1. Related works

Segmentation in computer vision is usually achieved through
minimizing energy functions via variational methods [12–19] and
combinatorial methods [20–23]. Variational methods, also known
as active contour model, can be traced back to the snake model that
defines a parametric contour to locally approximate the bound-
ary of interest [12]. Though several extensions have been made
since the original version [13,14,16], its shortcoming of unchange-
able topology has not been naturally handled until the application
of implicit curve representation, level set [15,17–19]. Variational

methods aim to minimize an energy functional in a continuous
space so the results can achieve sub-pixel accuracy, while, since
they only search the solution in a local manner, an initial estima-
tion of the boundary has to be provided. Contrary to this kind of
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(BIS). Then for each BIS, Hough transform is used to detect two line
Fig. 1. Illustration of intima–media in a longitudinal ultrasound image.

ethods, combinatorial methods use dynamic programming (DP)
20], graph cut [21–23] to minimize a cost function in a discrete
pace, thus they can only achieve pixel-level accuracy, but the
olution obtained is globally optimal. Similar to this classification,
he published methods on intima–media segmentation can also be

ainly categorized by DP based [4,5,9] and active contour model
ased [6–8], while a recent detailed review can be found in [11].

The application of DP to this problem was early introduced in
endelhag et al.’s work [4], and then combined with a multi-scale
ethodology [5]. In the multi-scale DP, the coarse-scale image was

sed for estimating the artery wall, which was followed by the
etection of far wall MAI and LII in the fine-scale image [5]. Cheng
nd Jiang pointed out a disadvantage of this DP, that is the searched
II and MAI may cross each other [9]. To overcome this shortcom-
ng, they defined a combined cost function containing both of LII
nd MAI, as well as a shape constraint relating to their distance
ange and variation.

On the other hand, an early application of active contour model
as made by Cheng et al., who determined the initial contour of LII

hrough connecting two manually selected end points according
o image gradient. The MAI was detected by pushing the contour
ownward from an initial position below the detected LII [6]. Cec-
arelli et al. detected the LII by searching the boundary point from
op to bottom according to image gradient and its fixed left neigh-
or. The detection of the MAI was achieved by a greedy algorithm,
hich used an initial contour searched in a region determined by

he detected LII [7]. C.P. Loizou et al. used a different order that
etected the MAI firstly from an initial contour determined by
hresholding and morphological processing and then the LII. The
ey in their work was to apply image normalization and speckle
eduction as a pre-process procedure [8].

However, these active contour based methods have three draw-
acks. Firstly, when the first contour fails to approach one side
oundary, the error would be accumulated to the second contour.
his is especially the case when noise or missing boundary fails
he first initialization. Secondly, even if the first detection suc-
essfully identifies one side boundary, an estimation of constant

hickness cannot guarantee the second initialization close to the
esired boundary if the actual thickness deviates far away from
he constant estimation. Finally, since the two side boundaries are
g and Graphics 36 (2012) 248–258 249

detected separately, no shape information connecting the two side
contours can be incorporated in their deformation processes [6–8].

1.2. Our method

In this paper, we propose an active contour model based
intima–media segmentation approach that simultaneously esti-
mates the initial contours for LII and MAI by using Hough transform
on partitioned image segments and combines the independent
deformations of two contours together by minimizing a unified
energy functional. Through imposing distance and angle constraint
on the peak searching procedure of Hough line detection and cou-
pling the two independent curves in their evolution, the shape
information of two parallel curves with certain distance range is
incorporated throughout the method.

Hough transform has been regarded as a robust detection
approach for analytic shapes such as lines, ellipses as well as arbi-
trary shapes [24–27]. Based on the mathematical formulation of
the shape, it converts the input binary image to an accumulator
array which is a discretized version of the parameter space. The
position of the maximum of the accumulator array corresponds
to the parameter set of the detected shape in the original image.
This technique has been adopted to segment the lumen for lon-
gitudinal and intravascular images in [28,29]. However, it is only
designed to detect straight or circular lumen boundaries, which is
unlike the method in this paper for intima–media boundary detec-
tion. Its application here that detects the two nearly parallel line
segments in partitioned image segments can adapt to the variabil-
ity of boundary curve and thickness. Moreover, due to the shape
constraint imposed, it is especially robust to ultrasound artifacts
such as noises in the lumen or missing boundary.

The active contour model in our method takes a parametric
snake model for accurate segmentation because the benefits of
implicit contour such as easy to extend to 3D domain and adaptive
to topology change are not needed in intima–media segmentation
while parametric contour is simple and fast. The proposed active
contour model, dual snake (DS) model, couples the evolution of the
two curves via forcing their distance at one position being consis-
tent with the neighboring distances to estimate missing boundary
of LII. Similar coupled active contour models, both parametric and
implicit, have been proposed in other literature [30–34], but they
only constrain the between distance or area globally for heart or
brain segmentation, which are different from the snake model
in this paper that refers to the neighboring distances for missing
boundary estimation.

The rest of the paper is organized as follows. Section 2 describes
our intima–media segmentation approach in details. Section 3 com-
pares the performances between our method and previous snake
or DP based methods, and evaluates our method with respect to
clinical parameters. Section 4 discusses the accuracy, efficiency,
advantage and limit of our method and concludes this paper.

2. Intima–media segmentation

The proposed method accepts a user selected ROI as an input.
Fig. 2 shows an overview of the proposed intima–media segmenta-
tion approach, which consists of five steps. The first step computes
the edge map from the input ROI. The second step thresholds the
edge map to a binary image which is later divided horizontally
into several equal width non-overlapping binary image segments
segments, primary line (PL) and secondary line (SL), as the approx-
imation to the local LII and MAI. The initial contours for LII and
MAI are constructed by sampling the corrected line segments. The



250 X. Xu et al. / Computerized Medical Imaging and Graphics 36 (2012) 248–258

a–me

fi
s

2

s
i
o
e
o
o
r

f

w
d
d
i
o

2

a
m
t
B
s
c

e
o
T

�

k

Fig. 2. Overview of our intim

nal step applies the proposed DS to evolve the initial contours
imultaneously to final segmentation result.

.1. Edge map computation

The edge map is required both for the Hough transform and
nake model. It should have large values near the boundary of
nterested object and can be defined by gradient magnitude of the
riginal image. In ultrasound artery images, LII and MAI have lower
cho region above and higher echo region below while IMI has
pposite features (Fig. 1). In order to eliminate the interference
f IMI, we only consider the edges with positive derivatives with
espect to ordinate. The proposed edge map is defined by

(x, y) = max

{
0,

∂(G� ∗ I(x, y))
∂y

}
(1)

here I denotes the original ROI image, ∂/∂y denotes the first
erivative with respect to y, G� is a Gaussian function with stan-
ard deviation �. The effects of our edge map for IMC are illustrated

n Fig. 3. We can observe that the edges from the IMI as well as
pposite edges in the lumen and adventitia are eliminated in Fig. 3c.

.2. Hough transform

Assuming LII and MAI have piecewise linear boundaries, we can
pply Hough transform to detect them upon divided image seg-
ents. To be specific, we threshold the edge map f(x, y) by T, divide

he resulting binary image into Ns equal width non-overlapping
IS {Si|i = 1, . . ., Ns}, detect two line segments PLi and SLi as two
ide boundaries in Si by Hough transform, and construct the initial
ontours for LII and MAI from the sets of PLi and SLi.

The Hough line detection [24] represents a line by two param-
ters � and �, where � is the distance between the line and the

rigin of the coordinate system and � is the orientation of the line.
he equation of a line according to the geometry is

= x cos � + y sin � (2)
dia segmentation approach.

where x and y are the coordinates of any point belonging to the
line. From (2), the accumulator array H(�, �) is constructed in a
way through

H(�, �) =
∑

v(xk, yk, �, �) (3)
Fig. 3. Comparison between traditional edge map and directional edge map. (a)
Original image. (b) Traditional edge map defined by gradient magnitude | ∇ G� ∗ I|.
(c) Directional edge map obtained by Eq. (1) (� = 1).
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Fig. 4. Boundary detection by Hough transform in a BIS. (a) The blue solid line and
dashed line in the BIS correspond to PL and SL, respectively. (b) The middle blue dot is
the first peak (corresponds to PL in (a)) of the accumulator array (background image
in (b)). The imposed angle constraint and distance constraint restrict the searching
region for the second peak to two yellow rectangles below and above the first peak,

left SLj−1 and right SLj+1 (if inequality (9) holds then the correction
is needed otherwise no action is performed) and repeat this pro-
cess that takes the previously corrected pair as reference to correct
its left or right neighbor until two ends S1 and SNs . Because the
X. Xu et al. / Computerized Medical I

here 0 < � < L, 0 < � ≤ �, L is the diagonal distance of the BIS, (xk, yk)
re the coordinates of an edge point and v(xk, yk, �, �) is a voting
unction defined by

(xk, yk, �, �) =
{

1, if � = xk cos � + yk sin �
0, otherwise

(4)

he construction of accumulator array implies that H(�, �) corre-
ponds to the number of a collinear set of edge points in the binary
mage that are passed through by line (�, �). Hence for each BIS we
nly need to find two peaks that correspond to the local LII and
AI, respectively.
The first peak can be simply identified by locating the maximum

f the accumulator array, i.e., the position (�1, �1) is defined by

�1, �1) = arg max
(�,�)

H(�, �) (5)

ased on the position of the first peak, we can find a line segment
hat corresponds to the local boundary. We call it primary line seg-

ent (PL), which corresponds to the LII or MAI in our experimental
mages.

The other side boundary can be detected by finding another
eak (�2, �2) in the accumulator array. We call the correspond-

ng line segment secondary line segment (SL). Here we introduce
he shape constraint of IMC. Firstly, the two side boundaries in one
IS of non-plaque region are nearly parallel, so an angle constraint
an be imposed between PL and SL, i.e., |�2 − �1| ≤ �max. Secondly,
he distance between them also satisfies the anatomical range, i.e.,
min ≤ |�2 − �1| ≤ dmax. The position of the second peak which cor-
esponds to SL is computed as follows:

�2, �2) = argmax
(�,�)

H(�, �) (6)

here (�, �) satisfy the following conditions:

� − �1| ≤ �max (7)

min ≤ |� − �1| ≤ dmax (8)

ig. 4 illustrates the detection of PL and SL. The number of BIS is
etermined by Ns =

⌈
N/lmax

⌉
given ROI width N, where lmax is the

aximal length that the width of BIS could achieve. In the exper-
ments, we set T = 0.3 for f(x, y) normalized to 0–1, lmax = 90 for
artitioning the ROI, �max = 1 for forcing PL and SL parallel, and
hoose dmin = 5, dmax = 25 according to the actual range of IMT from
ll experimental images.

.3. Initial contour construction

The above multiple line segments {PLi|i = 1, 2, . . ., Ns} and
SLi|i = 1, 2, . . ., Ns} can be close to the right interfaces if only
ufficient boundary edge points exist. However, noise edges and
nsufficient boundary edge points due to weak boundary could lead
o ill-positioned SL. To handle this situation, we correct the ill-
ositioned one based on its neighboring reference. Assuming that
Li and SLi are reference pair used for correcting its right neigh-
or SLi+1, Fig. 5 shows three possible conditions under which SLi+1
eeds correction. That is SLi+1 is too close to PLi+1, too far away from

t or at the wrong side. Note that PLi, SLi and PLi+1 are assumed to
e correct approximation to local boundaries, so the left end point
f PLi+1 should be close to one of the two right end points of the ref-
rence pair. Then we only need to check the adjacent 4 end points
etween Si and Si+1 because the angle constraint in Hough trans-
orm makes the two line segments in a BIS nearly parallel. Suppose
he ordinates of the 4 points are ya, y , yc, y , we only need to sort
b d
hem to obtain the ordered ordinates y′

a ≤ y′
b

≤ y′
c ≤ y′

d
and use the

ollowing criterion to determine if correction is needed.

′
c − y′

b < max{y′
b − y′

a, y′
c − y′

b, y′
d − y′

c} (9)
where the lower blue dot is the searched second peak (corresponds to SL in (a)). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)

If inequality (9) holds, it means that the central difference of the
ordered ordinates is not the largest among the three differences or
one of the three conditions in Fig. 5 happens.

Once we are sure that the ill-positioned SLi+1 exists according to
its neighboring reference, we can perform its correction by gener-
ating a new SLi+1 that is parallel with PLi+1 and making the distance
between them equal to the reference distance. The relative position
of the new SLi+1, whether it should be placed above PLi+1 or below
PLi+1, can be determined by the closeness between PLi+1 and the
neighboring end points. For example, PLi+1 is closer to the lower
reference line segment in Fig. 5, so a new SLi+1 should be placed
above PLi+1 with their distance amounting to |ya − yb|.

The above correction step can be started from any Si, i = 1, 2, . . .,
Ns because we do not know which one has the initial line segments
corresponding to true boundaries. To overcome this problem, we
make a heuristic assumption that makes the pair of PLj and SLj that
passes most edge points in the BIS out of all the pairs as the start-
ing position. Then we can use this pair as reference to correct its
Fig. 5. Three possible cases where Si has reference line segments and SLi+1 in Si+1

needs correction. Solid lines (dashed lines) correspond to the line segments that lie
at the correct boundaries (false edges). (a) SLi+1 lies close to PLi+1. (b) SLi+1 lies far
away from PLi+1. (c) SLi+1 lies at the wrong side.
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Fig. 6. Illustration of correction and sampling processes. (a) Original image. (b) Line
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first term is a smoothing force that smoothes the contour, the sec-
egments detected by Hough transform. (c) Corrected line segments. (d) Sampled
nitial contours. The starting reference pair is in the first BIS from left hand side.

orrection is performed according to a strict criterion that checks
he ordinates of 4 points, experiments show that only few extreme
onditions can cause that to happen and also that if it happens, the
ollowing segments are seldom influenced except that they are also
ll-positioned. From the corrected line segments, the initial con-
ours are constructed by sampling {PLi|i = 1, 2, . . ., Ns} and {SLi|i = 1,
, . . ., Ns}per 10 pixels and making the higher (lower) sample points
s the LII (MAI) contour. The correction and sampling processes are
llustrated in Fig. 6.

.4. Dual snake model

The above initial contours can be driven by snake model for
ccurate segmentation. Snake model is an edge-based model that
ttracts the initial contour towards local maxima in the edge map
12]. The traditional snake model finds the curve � (q) : [0, 1] → ˝
hat locally minimizes the following energy functional

Esnake(� ) = w1

2

∫ 1

0

∣∣∣∣∂�

∂q

∣∣∣∣
2

dq + w2

2

∫ 1

0

∣∣∣∣∂2�

∂q2

∣∣∣∣
2

dq −
∫ 1

0

f (� )dq

(10)

here � (q) = (x(q), y(q)), f(x, y) is the edge map. w1 and w2 are the
eights of curve length and rigidity that control its smoothness.

Previous snake based intima–media segmentation methods use
ndependent deformations for two side contours [6–8]. Recent
esearches suggest that human vision may interpret the two side

oundaries simultaneously and combining the two contours could

ead to better results [9,10]. However, such constraint is only
ncorporated by DP [9] or in the Bayesian framework [10]. We incor-
g and Graphics 36 (2012) 248–258

porate this constraint in the snake model. The modified energy
functional is defined by

EDS = Eint + Eext (11)

where Eint is the internal energy that controls the smoothness of the
contours and Eext is the external energy that attracts the contours
towards boundary. They are defined by

Eint = 1
2

2∑
i=1

∫ 1

0

wi1

∣∣∣∣∂�i

∂q

∣∣∣∣
2

+ wi2

∣∣∣∣∂2�i

∂q2

∣∣∣∣
2

dq

︸ ︷︷ ︸
smoothing energy

(12)

Eext = 1
2

˛

∫ 1

0

∣∣∣∣∂(�1 − �2)
∂q

∣∣∣∣
2

dq

︸ ︷︷ ︸
uniform energy

+ (1 − ˛)
2∑

i=1

∫ 1

0

−f (�i)dq

︸ ︷︷ ︸
boundary energy

(13)

where � 1(q) = (x1(q), y1(q)) is the LII contour, � 2(q) = (x2(q), y2(q))
is the MAI contour. w11, w12 (w21, w22) are the weights of length and
rigidity of LII (MAI). ∂(� 1 − � 2)/∂q is the variation rate of the dis-
tance vector of corresponding points of the two contours. ˛ ∈ [0, 1]
adjusts the weight between uniform energy and boundary energy.

Compared to traditional snake model, our improvement focuses

on the uniform energy
∫ 1

0
|∂(�1 − �2)/∂q|2dq in Eext. This term

makes the distances of the two contours uniform, e.g., two paral-
lel curves have little uniform energy. The uniform energy provides
a prior shape constraint, connects the independent deforma-
tions together and adjusts the two contours by referring to each
other.

EDS in (11) is a functional with respect to x1(q), y1(q), x2(q), y2(q).
To minimize EDS, 4 PDE can be obtained by gradient descent flow

∂xi

∂t
= wi1

∂2xi

∂q2
− wi2

∂4xi

∂q4
+ ˛

(
∂2xi

∂q2
− ∂2x3−i

∂q2

)

+ (1 − ˛)
∂f

∂x
(xi, yi) (14)

∂yi

∂t
= wi1

∂2yi

∂q2
− wi2

∂4yi

∂q4
+ ˛

(
∂2yi

∂q2
− ∂2y3−i

∂q2

)

+ (1 − ˛)
∂f

∂y
(xi, yi) (15)

where i = 1, 2. The above parametric contours require frequent re-
parameterization because the discretized curve points could bunch
or space out [35]. In longitudinal ultrasound CCA images, LII and
MAI are nearly horizontal curves that own a unique ordinate per
abscissa thus the update of xi(q) is not needed. We employ a simpli-
fied version that updates only yi(q) so that re-parameterization can
be avoided. The PDE for evolving the initial contours are defined as
follows:

∂yi

∂t
= wi1

∂2yi

∂x2
− wi2

∂4yi

∂x4︸ ︷︷ ︸
smoothing force

+ ˛

(
∂2yi

∂x2
− ∂2y3−i

∂x2

)
︸ ︷︷ ︸

uniform force

+ (1 − ˛)
∂f

∂y
(x, yi)︸ ︷︷ ︸

boundary force

(16)

where yi(x, t) denotes the contour for LII (i = 1) or MAI (i = 2). The
ond term is a uniform force that makes the distances between two
contours consistent, and the third term is a boundary force that
attracts the contour to edges. We can interpret the uniform force



maging and Graphics 36 (2012) 248–258 253

a
T
h

i
e
i

Y

w
d
d
i
−
F
f
i
2
fi

s
d
p
i
a
v
t
t
d
d

d

3

I
m
r

n n

F
f

X. Xu et al. / Computerized Medical I

s an adaptive spring that is affected by its neighboring distances.
his force always tries to maintain a uniform distance along the
orizontal direction.

In the implementation we employ a semi-implicit scheme sim-
lar to [12] that applies an implicit scheme for smoothing force and
xplicit schemes for uniform and boundary forces. The correspond-
ng difference equations are defined as follows:

n+1
i = (Ai + I)−1[Yn

i + ˛B(Yn
i − Yn

3−i) + (1 − ˛)Fn
i ] (17)

here Yn
i = [yn

i,1, yn
i,2, . . . , yn

i,J
]T denotes the vector of ordinate of J

iscretized curve points at time n, Ai is a pentadiagonal matrix of 5
iagonals wi2, −wi1 − 4wi2, 2wi1 + 6wi2, −wi1 − 4wi2, wi2 accord-

ng to implicit scheme, B is a tridiagonal matrix of 3 diagonals 1,
2, 1 according to explicit scheme, I is an identity matrix of size J,
n
i = [fy(x1, yn

i,1), fy(x2, yn
i,2), . . . , fy(xJ, yn

i,J
)]T denotes the vector of

y(x, y) value of J discretized curve points at time n. For parameter-
zation, we sample the contours per 10 pixels with wi1 = 0.1, i = 1,
, w12 = 0, w22 = 0.1, ˛ = 0.2 and the magnitude of boundary force
eld |(∂f/∂y)(x, y)| normalized to 0–1.

The boundary condition yn
i,−1, yn

i,0 (yn
i,J+1, yn

i,J+2) should be cho-
en carefully for the left (right) end of the contours in the above
ifference equations. Averaging the neighboring 4 points has been
roposed in [6] while this simple approach may not keep slant-

ng ends. To keep the slope of the ends, linear extrapolation can be
pplied to their centers, i.e., let cn

−1, cn
0 be the linearly extrapolated

alues from cn
1, cn

2, cn
3, cn

4 where cn
j

= (yn
1,j

+ yn
2,j

)/2. We also notice
hat the uniform energy deduces a diffusion term relating to dis-
ance. Mirror reflection can be applied to the distance to force the
iffusion of distance unbiased by external factors, i.e., let dn

−1 = dn
3,

n
0 = dn

2 where dn
j

= yn
2,j

− yn
1,j

. The illustration of this boundary con-
ition for the left end is given in Fig. 7.

. Results
Fig. 8 shows two difficult segmentation tasks and our results.
n Fig. 8a, strong noises are present in the lumen. The proposed

ethod overcomes such noises in Fig. 8c and e. Hough transform
educes the interference by considering all the edge points in a BIS.

ig. 8. Two examples of segmentation results against severe artifacts. (a) An image with st
rom (a), respectively. (b) An image with missing boundary of LII. (d and f) The initial con
Fig. 7. Illustration of boundary condition for dual snake model. The centers c−1, c0
are the linearly extrapolated values from cn

1, cn
2, cn

3, cn
4 to keep slanting ends. The

distances satisfy dn
−1 = dn

3, dn
0 = dn

2 in accordance with the diffusion term of distance.

The missing boundary in Fig. 8b may complicate the initial contour
estimation and attract the two side contours to the same inter-
face while the proposed method estimates the missing boundary
in Fig. 8d and f. The constraints in Hough transform and the uniform
energy in DS both contribute to this success.

3.1. Data acquisition

Our experimental images came from a Philips iE33 ultrasound
system with an 11 M probe, in Zhongnan Hospital of Wuhan
University, Wuhan, China. All the images were logarithmically
compressed and recorded digitally on an optical disk with 256
gray levels. The subjects were 25 patients, including 16 male and
9 female, who received ultrasonographic examination in Zhong-

nan Hospital when their ages ranged from 17 to 86 years with
a mean of 57 years. We selected 50 ROI images for experiments,
1–3 images for each patient, with average ROI size 308 × 67 pix-
els (19.8 mm × 4.3 mm). In the examination of 22 subjects, the IMT

rong noises in the lumen. (c and e) The initial contours and final evolution contours
tours and final evolution contours from (b), respectively.
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ig. 9. Comparison between our method and previous methods for a thin IMC. (a) T
nd our method (f), respectively.

as less than 1 mm and no visible plaque was detected. In order
o validate our method in the case of large IMT, we also included
therosclerotic subjects with visible plaque existing. However, in
his situation, overt region of plaque was excluded and only non-
laque region of the original image was selected for analysis.

.2. Quantitative metric

To evaluate the accuracy of the automatic methods, we com-
ared them with gold standard established by the experts who
anually delineated each side boundary totally 4 times for each

mage. The gold standard was obtained by averaging the 4 interpo-
ated matched points (ordinates) of manual contours. To measure
ccuracy of the automatic methods, mean absolute distance (MAD)
etween gold standard and automatic segmented contour was cal-
ulated. Suppose the ordinate of gold standard is yGS and that of the
atched point of automatic method is yAM, the MAD is defined by

AD = E(|yGS − yAM|) (18)

or each ROI, the physical pixel size was retrieved from the original
mage to compute the MAD in physical unit.

.3. Comparison with previous methods

We compared our method with traditional snake (TS) model
nd DP based segmentation methods. TS can be regarded as
emoving the uniform energy in (13), i.e., setting ˛ = 0, if we
mploy the same proposed initial contour construction procedure.
raditional Dynamic Programming (TDP) for intima–media seg-
entation searches two side boundaries separately using the same

ost function [9]. Based on the first searched boundary, the other
ide boundary is searched after inhibiting the edge map accord-
ng to the range of IMT. The optimal weight of smoothness � is
earched by minimizing the mean of errors of all interfaces with
tep 0.01. Dual Dynamic Programming (DDP) is an improved DP

ased approach that combines the two independent cost functions
ogether in a unified framework such that a smooth distance term
nd hard constraints can be incorporated [9]. The optimal param-
ters for smooth distance term 	1 and smooth curve term 	2 are
iginal image. (b–f) Contours generated by gold standard (b), TDP (c), DDP (d), TS (e)

searched in the 2-D parameter space with step 0.02 to minimize
the same criterion.

Fig. 9 illustrates a comparison between our method and pre-
vious methods for a thin IMC. The segmentation results indicate
that all the methods produced contours close to boundaries and
similar to gold standard except TDP. This may be explained by
the inconsistent boundary strength and small IMT. Because the
left part of this image features a strong boundary for MAI whereas
the right part features a strong boundary for LII, the first searched
contour by TDP has its left part attracted to the MAI and right
part attracted to the LII, which has the error accumulated to the
second contour that crossed the first one. Note that such error
can be eliminated by increasing the weight of smoothness � for
TDP. However, such adjustment would cause other problems since
the parameter is searched to satisfy all the images as much as
possible.

Fig. 10 illustrates a comparison for a slanting IMC with weak
boundary. We can observe that both TDP and DDP failed in this
context. On the contrary, TS and our method succeeded because of
the same initial contour construction they applied. The bad con-
tours generated by DP based methods may be attributed to the
slanting weak boundary. Because of the large smoothness term
imposed, TDP and DDP are inclined to produce horizontal contours
instead of slanting ones. Moreover, the weak boundary did not suf-
fice to attract the contours, which resulted in the right parts of
the contours horizontally away from the true boundaries. We also
note that a small smoothness term would make them succeed to
segment the IMC. However, such adjustment would cause other
problems because the parameters are searched to minimize the
mean of MADs of all boundaries.

Fig. 11 illustrates a comparison for an IMC with missing bound-
ary caused by low gain setting when the image was recorded.
We find that DDP and our method produced similar contours to
gold standard while TDP and TS had the two contours attracted to
the same interface. The successes of DDP and our method can be
attributed to the smooth distance term and the uniform energy,

respectively, which estimated the missing information from the
MAI contour and neighboring distances. Without this constraint,
both TDP and TS that feature separate boundary detections failed
to produce a proper LII contour.
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Table 1
Segmentation errors of all the methods in our experiments.a

MAD (�m) LII (Mean ± SD) MAI (Mean ± SD) IMC (Mean ± SD)

TDPb 47.0 ± 46.6 63.3 ± 38.7 55.2 ± 40.4
DDPc 38.2 ± 17.1 53.1 ± 26.2 45.6 ± 19.4
TS 29.5 ± 23.0 49.0 ± 24.5 39.3 ± 20.4
Our method 29.0 ± 15.0 47.1 ± 23.0 38.1 ± 16.4

a The number of images is n = 50.
b The optimal parameter � for TDP is set to be � = 1.05.

F
T

ig. 10. Comparison between our method and previous methods for a slanting IMC
b), TDP (c), DDP (d), TS (e) and our method (f), respectively.

Table 1 shows the statistics of segmentation errors of all the
ethods and Fig. 12 uses the box plots to visualize their distribu-

ion. It can be observed that the snake based methods have less
verall error than DP based methods. This may be explained by
ur robust initial contour construction employed by snake based
ethods. Although the DP based methods have fewer parameters

o adjust, we find that these parameters are unstable and sensi-
ive to boundary slope. Given proper generated initial contours,
he snake based methods have the ability to achieve better seg-
entation results. Another phenomenon is that the proposed DS
erformed slightly better than TS. This advantage has been visu-
lized in the box plot showing the large extreme error of TS in
ig. 12a. Recall that without the uniform energy the LII contour was

ig. 11. Comparison between our method and previous methods for an IMC with missin
DP (c), DDP (d), TS (e) and our method (f), respectively.
c The optimal parameter set for DDP is 	1 = 1.34, 	2 = 0.42.

g boundary. (a) The original image. (b–f) Contours generated by gold standard (b),
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Fig. 12. Box plots of segmentation errors among TDP, DDP, TS a
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in reference [5] that suggests handling it through incorporating
ig. 13. Parameter sensitivity analysis of lmax for both correction and non-correction
rocedures in the initial contour construction.

ttracted to the MAI when missing boundary was present, which
ay account for such benefit.

.4. Parameter sensitivity analysis

The maximal BIS width lmax is important to the proposed
ethod whose basic assumption is that the boundary curve can be

pproximated using piecewise linear representation. Fig. 13 shows
ifferent overall performances from different lmax, both with and
ithout correction procedure in the initial contour construction,
here the ordinate is the mean of errors of IMC of all experimental

mages based on the abscissa lmax. We can see that the correction
rocedure in the initial contour construction worked very well such
hat the overall error with correction is much lower than that with-
ut correction. Moreover, we find the performance with correction
s rather stable even when lmax lies in a wide range [50, 110], in

hich the overall error is still lower than that of DP based meth-

ds according to Table 1. However when lmax < 50 or lmax > 110 the
erformance decreases dramatically. The large error from lmax < 50
an be explained by that the proposed method relies on the PL cor-

able 2
omparison of mean and max value of IMT between gold standard and our method.a

Gold standard (Mean ± SD) Our meth

IMTmean (mm) 0.63 ± 0.14 0.65 ± 0
IMTmax (mm) 0.75 ± 0.16 0.75 ± 0

a The number of images is n = 50.
nd our method. (a) LII error. (b) MAI error. (c) IMC error.

responding to one side boundary whereas small width of BIS does
not guarantee this assumption due to insufficient local edge point
information. The same failure occurs when lmax > 110, which sug-
gests that the boundary curve could be complicated and cannot be
approximated using a small number of long line segments.

3.5. Clinical evaluation

To evaluate our method in clinical environment, we calculated
the thicknesses of corresponding point pairs between two side
contours. For each image, mean and max value of IMT can be
obtained from these thicknesses. We computed the mean and stan-
dard deviation (SD) of these statistical variables for gold standard,
our method and the difference between. Table 2 shows the compar-
ison of IMTmean and IMTmax between gold standard and our method.
It can be seen that these two methods generate similar statistics.
However, the SD of difference of IMTmean is less than that of IMTmax,
which implies that IMTmean is more reliable than IMTmax from our
method. This may be explained by the fact that the uniform energy
tends to obliterate minor details. The precise results indicate that
the error of IMTmean lies between −0.03 mm and 0.08 mm and that
of IMTmax lies between −0.1 mm and 0.09 mm within 95% confi-
dential interval. Fig. 14a plots the IMTmean by our method versus
gold standard. The slope of the linear regression line is 1.09. Fig. 14b
is the Bland–Altman plot [36] of IMTmean between our method and
gold standard.

4. Discussion and conclusion

4.1. Accuracy and efficiency

The results in Table 1 and Fig. 12 show that the average errors
and median errors of LII and MAI are all within 50 �m, which are
similar to the results reported in the review [11]. However, the
accuracy of MAI is lower than that of LII. This may be attributed to
the ambiguous boundary understanding of MAI (especially large
IMT) from experts who did not delineate the contours accord-
ing to gradient maxima. This problem has also been mentioned
od (Mean ± SD) Difference (Mean ± SD) R

.16 0.02 ± 0.03 0.99

.18 −0.00 ± 0.05 0.97

into the cost function multiple features determined by a complex
training procedure. The side effects of the relative large MAI error
also include the larger IMTmean of our method compared to gold
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ig. 14. Statistical evaluation of IMTmean between our method and gold standard.
a) IMTmean from our method versus IMTmean from gold standard. (b) Bland–Altman
lot of IMTmean between our method and gold standard.

tandard as shown in Table 2. Though we are not focused on this
roblem due to different understanding from different experts, an
dge map including multiple features and deduced from a training
rocedure can also be applied for snake based segmentation.

The time cost of our algorithm comprises many different parts.
n our experimental hardware environment, CPU Intel Core i5-
30M, 2 GB RAM, the proposed method implemented by MATLAB
akes approximately 23 s to process all 50 images. The average
ime cost is 0.46 s. Based on this implementation, we find the most
ostly part is Hough transform, taking up to approximate 75% out

f total time cost. The inefficiency can be attributed to thick edges
fter thresholding. Non-maxima suppression [37] can be applied
o keep edges thin, with only vertical orientation considered. This
educed the time cost of Hough transform approximately by half
g and Graphics 36 (2012) 248–258 257

while occasionally introducing ill-positioned line segments. Other
improvements of Hough transform such as using gradient direction
from the original image [25], statistically selecting few edge points
[27], or randomly choosing two points for line detection [26], can
also be applied to improve the overall efficiency.

4.2. Advantage and limit

The benefits of our method come from application of Hough
transform in the initial contour construction and the uniform
energy in the DS model. Because the Hough transform considers all
the edge points in the BIS, it is less likely to be affected by noises.
Its global nature also compensates the holes or missing boundaries
that are common in ultrasound images. Moreover, the distance con-
straint and angle constraint enable detection of two nearly parallel
line segments that satisfy a large thickness range. The shape con-
straint in the proposed DS can estimate the missing LII boundary
according to the MAI contour and neighboring distances. Besides,
since this prior is defined in a variational framework, sub-pixel
accuracy can be achieved.

Despite the above advantages, there are two limits relating
to the proposed method. Firstly, the initial contour construction
relies on the assumption that the boundaries are piecewise linear
curves. This means the method would work fine for early thick-
ening IMC. However, it would fail for irregular boundaries where
such assumption does not hold, e.g., plaques. In the context of
plaque segmentation, the traditional DP exhibits an advantage that
employs the same cost function [5]. Secondly, the proposed DS is
inclined to obliterate minor details since the uniform energy tries
to maintain two parallel curves with little distance variation. This
disadvantage could be trivial given that with small uniform energy,
general thickness variation can still be maintained, especially in
the case that the interface presents a strong boundary. However, if
minor details are important in some situation, the uniform energy
should be minimized.

4.3. Conclusion and future work

This paper proposed a snake model based ultrasound
intima–media segmentation approach which uses Hough trans-
form to construct the initial contours and incorporates a shape
constraint relating to distance variation into snake model. Accord-
ing to our experiments, its performance exceeds current DP and
snake based methods both qualitatively and quantitatively, and the
results also provide similar clinical parameters to gold standard.
Compared to DP based methods, the proposed method uses a robust
initialization to avoid leak of weak boundaries and searches the
local minimum in a continuous space to achieve sub-pixel accuracy.
Compared to previous snake based method, the proposed method
is robust to ultrasound artifacts, especially missing boundary. The
future work will focus on improving the proposed method through
theoretical analysis.
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